LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS
 FIFTH SEMESTER - NOVEMBER 2014

PH 5407 / PH 5404 / PH 5401 - ELECTRONICS - II
Date: 12/11/2014
Time : 09:00-12:00
Dept. No. \square Max. : 100 Marks

PART A

Answer ALL the questions:

$(10 \times 2=20)$

1. Draw the circuit diagram of A non-inverting OPAMP with a gain 2 .
2. What are high pass and low pass filters? Draw the frequency versus gain graphs.
3. Draw the resistor network diagram for weighted D / A converter?
4. Convert the given hexa-decimal number $(6 \mathrm{E})_{\mathrm{H}}$ to decimal number.
5. What are the flags in the flag register of $\mu \mathrm{P} 8085$?
6. Write any two data transfer instructions in $\mu \mathrm{P} 8085$ and explain their functions.
7. Write an ASM program to add $2 \mathrm{~A}_{\mathrm{H}}$ and 18_{H} and store the result in memory location 200B.
8. What is meant by subroutine in $\mu \mathrm{P} 8085$?
9. What is phase locked loop (PLL)?
10. Draw the circuit diagram of A monostable multivibrator using IC 555.

PART B

Answer any FOUR questions:

$(4 \times 7.5=30)$
11. Briefly explain the function of OPAMP as i) integrator ii) differentiator with neat circuit diagram.
12. Explain the construction and working of R-2R ladder D/A converter.
13. Briefly explain the different addressing modes of programming in $\mu \mathrm{P} 8085$ with some examples.
14. Write an ASM program to divide two 8 bit numbers in immediate and direct modes.
15. Write an ASM program to find the smallest number from an array of 5 numbers.
16. Explain in detail the working of astable multivibrator using IC 555.

PART C

Answer any FOUR questions:

$(4 X 12.5=50)$
17. Describe the procedure for solving second order differential equations using OPAMP. How are the initial conditions set up?
18. Discuss with necessary block diagram, the working of a counter type A/D converter. What are the advantages and disadvantages of this method?
19. Draw the functional block diagram of $\mu \mathrm{P} 8085$ and describe in brief the functions of different blocks.
20. Discuss the different arithmetic and branching instructions in the instruction set of $\mu \mathrm{P} 8085$.
21. Write an ASM program for finding the i) square ii)square root of an 8 bit number.
22. Describe with a neat diagram the internal architecture of 555 timer.

